Introduction

Thank you for choosing the CT-2000ES inverter unit, this inverter unit is suitable for operating squirrel cage induction motors. Please read this instruction manual carefully before actual usage in order to ensure proper operation and suit your needs.

Table of Contents

1. Inspection upon receiving 2
2. Installation and Storage $\underline{2}$
A. Installation 2
B. Storage. $\underline{2}$
C. Outline dimension. $\underline{3}$
3. Application notes 4
4. Block diagram and wring 4
A. Wiring of main and control circuit 4
B. Signal circuit 4
C. Connecting the power supply and the AC motor 4
D. R.S.T. for Power source reactor 5
E. Brake resistor standard of usage 5
F. Standard external connection diagram 6
G. Control circuit specification. 7
H. Terminal specifications 8
5. Operation Test. 9
6. Adjust and Function Specification 11
A. Keypad operation 11
B. Display specification 11
C. Keypad specification 11
D. Function Code $\underline{13}$
7. Description of alarm display indications 41
8. Troubleshooting 42
9. Maintenance and Inspection 43
10. Standard Specification. $\underline{44}$
A. 200V series 1 phase 44
B. 200 V series 3 phase. $\underline{45}$
C. 400Vseries 3 phase. 46
11. Function code Table. 47
12. Modbus Address of Display Data. 51
13. Series Communication User Manual. $\underline{52}$
A. The physical link. 52
B. Data structure in communication. 53
C. Function code in Modbus 53
D. Error check generation. 56
E. Group \& global broadcasting. 57

1. Inspection upon receiving

A. Check that the model, the capacity and power voltage specifications are as ordered.
B. Check that no damage has occurred during transportation.
C. Check that none of the internal parts have been damaged or have fallen off.
D. Check that none of the connectors have been damaged or have fallen off.
E. Check that there is no loosening of the terminals or screws of each of the parts.
2. Installation and Storage
A. Storage:

If the equipment is not to be installed immediately, it should be stored in a clean and dry location at ambient temperatures from $20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. The surrounding air must be free of corrosive contaminants.
B. Installation place:

Places where the peripheral temperature is from $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, and where the relative humidity is 90% or less. Avoid installing at places where there is dust, iron particles, corrosive gas, water spray, direct sunlight or too much vibration. And places where has good ventilation.

C. Outline Dimension:

CT2002ES-A75, CT2002ES-1A5, CT2004ES-A75, CT2004ES-1A5

CT2002ES-2A2 , CT2002ES-3A7, CT2004ES-2A2 , CT2004ES-3A7

KEYBAD screw position

3. Application notes

A. Concerning the inverter unit:
(1) Do not fit capacitors to the output side of the inverter in order to improve the power ratio.
(2) In case of fitting MC between inverter and motor to control motor operation, then the capacity of inverter must be 6 times the capacity of motor.
(3) Run a motor that is within the capacity of the inverter unit, light load current and no-load current will cause the motor to develop ripple current.
(4) This unit is provided with a current limiting function. The starting torque is assumed to be from 80% to 100%.
B. Concerning the AC motor
(1) When general-purpose motors are operated at low speeds, there is a reduced cooling effect, please apply the special purpose motor.
(2) Operation at frequencies exceeding 60 Hz requires caution, as there is the danger of the mechanical strength failure of the motor.
(3) When motors with brakes are being operated, the power for the brake and inverter should be taken from the same power supply and the brake operation must be in phase when the unit is started and stopped.
4. Block diagram, wring
A. Wiring of main and control circuit

Wire according to the standard connection diagram. On using the external sequence control, please use small signal relay or double terminal relay to avoid relay terminal malfunction.
B. Signal circuit

The signal circuit uses either shielded pairs or twisted pairs, should be wired either using a wiring duct separated from that for the power circuit, or with the wiring conduit isolated as much as possible.
C. Connecting the power supply and the AC motor

Connect the main circuit, by wiring according to the main circuit terminal connection diagram. Care is required not to make a mistake when connecting the input and output terminals, lest it will cause inverter damage. Specifications of main circuit path and NFB are as follow:

Voltage (V)	Model	NFB (A)	Wire size for circuit $\left(\mathrm{mm}^{2}\right)$
220	CT2002ES-A75	10	2.0
	CT2002ES-1A5	15	2.0
	CT2002ES-2A2	20	2.0
	CT2002ES-3A7	30	3.5
380			
460	CT2004ES-1A5	10	2.0
	CT2004ES-2A2	10	2.0
	CT2004ES-3A7	15	3.5

D. Instantaneous current and to improve power ratio, it should be fitted the A.C.L. to R.S.T. input side under the following circumstance:
a. Where power supply capacity is larger than 500 KVA.
b. Using thyrister, phase advance capacitor etc. from the same power supply.
A.C.L. Specifications table:

Voltage (V)	Model	Current (Ar.m.s)	Induction Value
220	CT2002ES-A75	6A	1.8 mH
	CT2002ES-1A5	10A	1.1 mH
	CT2002ES-2A2	15A	0.71 mH
	CT2002ES-3A7	20A	0.53 mH
$\begin{gathered} 380 \\ / \\ 460 \end{gathered}$	CT2004ES-1A5	5A	4.2 mH
	CT2004ES-2A2	7.5A	3.6 mH
	CT2004ES-3A7	10A	2.2 mH

Notes: The A.C.L. for 220 V and $380 \mathrm{~V} / 460 \mathrm{~V}$ have different induction values, please does not mix up.
E. Brake resistor standard of usage

CT2000ES series inverter contain brake resistor, P , PR terminal can connect external brake resistor. The sizes of brake resistors take the table for reference.
If inertia is too large or cycle of discharge is higher, user can increase wattage of resistor.

Voltage (V)	Type	Brake resistor standard	Mark
220	CT2002ES-A75	$120 \Omega 80 \mathrm{~W}$	
	CT2002ES-1A5	$80 \Omega 160 \mathrm{~W}$	
	CT2002ES-2A2	$60 \Omega 250 \mathrm{~W}$	
	CT2002ES-3A7	$36 \Omega 400 \mathrm{~W}$	
380			
	CT2004ES-1A5	$360 \Omega 300 \mathrm{~W}$	
	CT2004ES-2A2	$250 \Omega 500 \mathrm{~W}$	
	CT2004ES-3A7	$150 \Omega 800 \mathrm{~W}$	

F. Standard external connection diagram

(Note: While external is required for DBR, disconnect inter DBR first)

G. Control circuit

Multifunctional RELAY output terminal

H. Terminal Specifications

Main Circuit	R.S.T	AC power input terminal	Connect $3 \oint$ AC with Single $\oint 200-230 \mathrm{~V} / 50,60 \mathrm{~Hz}$ with $3 \oint 380-460 \mathrm{~V} / 50,60 \mathrm{~Hz}$
	U.V.W	Inverter output terminal	3-phase induction motor
	E	Ground terminal	Ground terminal of inverter chassis
	P.PR	Brake resistor connecting terminal	Connected proper brake resistor according to rated ampere
Control Terminal (1)	VC	Power speed output setting	DC +10V
	IN1	Current speed input setting	DC 4~20mA, CD01=2 or 4
	IN2	Voltage speed input setting	DC 0~10V/ 5K Ω VR, CD01=1,3
	VOUT	Operation (Frequency /Current) output indication	Analog Output 0~10V DC, Frequency/Current set by CD54
	CC	Common input control terminal	Ground terminal for speed setting
Control Terminal (2)	COM	Sequence control common terminal	Ground terminal for sequence control
	FR	Forward operation input terminal	Forward operation by FR-COM shorted
	RR	Reverse operation input terminal	Reverse operation by RR-COM shorted
	DI1	$\begin{aligned} & 2^{\text {nd }} \text { acceleration input terminal } \\ & \text { (AC2) } \end{aligned}$	Select $2^{\text {nd }}$ acceleration time mode by shorting 1 COM, set CD10
	DI2	$2^{\text {nd }}$ deceleration input terminal (DC2)	Select $2^{\text {nd }}$ deceleration time mode by shorting 2COM, set CD11
	DI3	JOG	Shorting 3-COM
	D14	RST	Shorting 4-COM
	$\begin{aligned} & \text { C1, NC1, } \\ & \text { NO1 } \end{aligned}$	Control output terminal NO NC C	Multifunctional relay output terminal Connector capacity AC $220 \mathrm{~V}, 0.1 \mathrm{~A}$ While normal C \square closed and NC \square Closed While operating $C \square$ open and NO \square closed Functions of C1, NC1, NO1 are set by CD47
	$\begin{aligned} & \mathrm{A}+, \mathrm{A}- \\ & \mathrm{B}+, \mathrm{B}- \\ & \mathrm{SG} \end{aligned}$	Serial communication terminal	Refer to Serial Communications User Manual. SG is 0 volt terminal of the digital signal.

5. Operational Test
A. Check before test Please check the following:
(1) Is wiring correct? Check especially the input and output terminals.
(2) Is there a short-circuit or ground connection on external wiring?
(3) Make sure there is no loosening of screws.
(4) Check external sequence control circuit.
(5) Check voltage of power supply.
B. Operation Method

CT-2000 series inverter unit has both operator panel and external operation methods.
(1) Operator panel

(2)External signal operation

Switch control

Test according to the following procedure and be aware of indications.
(1) Basic operational test
-Operational procedure
I. Connect power supply
II. Monitor glittering indicates frequency
III. Press either FWD or REV key, motor starts running. It will stop accelerating after reaching set frequency
IV. After pressing STOP key, motor stops and indicating frequency steps down. The set frequency starts glittering after the motor stops.
V. Repeat procedures III and IV to test forward and reverse operations.
-Operation monitor display
I. With reciprocal glittering indicated HZ LED and factory setting (set VR on the panel)
II. Hz display, with FWD (or REV) LED lighted up steadily; indication goes up according to frequency until reaching value 10.00 Hz
III. Indication goes down according to operation frequency, and returns to situation " I" after stop
(2) Frequency change test

- Operational procedure
I. Exercise the above operation test procedures I, II, III
II. Adjust VR on the panel to change frequency command
III. Repeat procedures II to increase or decrease frequency

-Operation monitor display

I. The same as the above basic test of I, II
II. Monitor display indicates the current new setting value

Note:

1. Is motor operation direction correct? (Changing any two of U.V.W output terminals to change motor operation direction)
2. Is there any noise or vibration on motor?
3. Is it run smoothly during acceleration and deceleration?
4. Is there any power failure?

6. Adjust and Function Specification

A. Keypad operation

(2) Display specification :
1.Hz, I LED : Hz LED means of recent revolution frequency.

I LED means of recent revolution current.
Hz and I LED mean of recent revolution voltage on the display.
2.FWD, REV : FWD means motor operate at forward direction.

REV means motor operate at reverse direction.
(3) Keyboard specification :

1. FWD and REV: Push keypad to control reverse of motor, and screen display main display content (Cd02 setting).
Push keypad to control reverse of motor, and screen display main display content (Cd02 setting).
2.STOP : STOP function: Stop motor revolution when push STOP key, and on the mean time screen flashing with commanding instruction.
RESET function : While failure occurred, press STOP key to re-start inverter and save failure in failure memory.
3.PROG/SET : FUNC switch: In display mode, PROG/SET key and screen shows Cd00 (General parameter input area). , Press PROG key again and screen shows CE-00 (failure and engineering mode). If pressed PROG key now, screen would return to display mode.
SAVE function: In parameter input mode, press PROG/SET key will save new parameter just input.
4.READ : READ function : When display shows Cd-?? (General parameter Input mode) or CE-?? (Failure display and engineering mode), Press READ to parameter input mode. Screen showing previously parameter setting. Change of parameter can be proceeding.
Back to display function : Press READ at parameter input mode can escape from parameter input mode and not save new parameter.
2. 4 Key (< as shown): SHIFT function : press $<$ key to swich position of nonius, when the nonius is at left, press <key nonius will be back to right, when accommodate to press $\boldsymbol{\nabla}, ~ \mathbf{\Delta k e y}$ to modify parameter in this mode.
3. $\boldsymbol{\nabla}$, \mathbf{A} key: Item of display changing : Press $\mathbf{A}, \boldsymbol{\nabla}$ key at display mode, select required item.
Parameter selection : Press $\mathbf{A}, \boldsymbol{\nabla}$ key to change value when screen shows Cd- (General parameter input area) or CE(Failure display and engineering mode). Press and hold $\boldsymbol{\Delta}, \boldsymbol{\nabla}$ key can progressively increase or decrease value.
Parameter modification : Press $\boldsymbol{A}, \boldsymbol{\nabla}$ key at parameter input mode can change parameter. Using with SET key to modify parameter.
D. Function Code

§ Cd00 Set frequency (Settable range $0.5 \sim 240 \mathrm{HZ}$)

There are 5 methods to change set frequency. Items $A \sim C$ are methods of panel key operation, items D-E are methods of external terminal input.
A. At display function, press READ and setting (Cd01=0)
B. Use PROG key to input data (Cd01=0)
C. Set VR on faceplate (Cd01=5)
D. Set external voltage (Cd01=1 or 3)
E. Set external voltage (Cd01=2 or 4)

Note:

1. Set value should be in accordance with V/F slope (Cd05) and upper limit frequency (Cd17).

Set by function key
A. At display function, press READ and setting (Cd01=0)

Meanwhile the operation speed (Cd00) has been changed but not saved yet (power cut off and supply again Cd00 still be10.00), press PROG/SET and save data.

READ 1 | $1.10 \mid 0$
B. Use PROG key to input procedure ($\mathrm{Cd} 01=0$)

Notice: Indicate 7- segment LED flash.
\S Cd01 Setting procedure of frequency (Selective range 0~6) The function cannot be modified during revolution.

Setting procedure of frequency is to select either panel key or external analog signal.
Cd01=0 Set frequency on operation panel, as the above items A-C.
Cd01=1 Set frequency by terminal In2 DC 0~10V/5K Ω VR
Cd01=2 Set frequency by terminal In1 DC 4~20mA
Cd01=3 Set frequency by terminal In2 DC 0~10V/5K Ω VR hysteresis
Cd01=4 Setting from terminal In1, input DC4~20mA hysteresis
Cd01=5 Setting value input by VR of keypad
Cd01=6 Set frequency by Multi-step function mode

\S Cd02 Select Main monitor display (Selective range 0~10)

The monitor is consisted of four 7-segment LEDs, displays frequency, current and various data by digital number and character.

Cd02=0 Display the frequency, LED HZ active
Cd02=1 Display the current, LED A active
Cd02=2 Display Ultimate speed, Hz and A LED de-active.
Cd02=3 Display DC voltage of DC BUS, showing d in front of value
Cd02=4 Display rms value of U.V.W. AC output, LED HZ, A active
Cd02=5 Display external control terminal status, showing E in front of value
Cd02=6 Display temperature rising of PIM module, showing b in front of value
Cd02=7 Display speed feedback. Check if MCK circuit working properly, then the restart and free run start function (Cd28) will working normally.
Cd02=8 Display current step of multi-step function (step)
Cd02=9 Display current time of multi-step function (minutes)
Cd02=10 Display motor vibration

\S Cd03 Torque mode (Selective range 0~1)
 The function cannot be modified during revolution.

Cd03=0 Automatic torque compensation de-active, set compensation by Cd07
Cd03=1 Initial Torque boost active, set compensation by Cd52
Set compensation by Cd63

\S Cd04 Operation command mode (Selective range 0~5)

The function cannot be modified during revolution
Cd04=0 Operation on operation panel 1, press $\boldsymbol{\Delta} \boldsymbol{\nabla}$ key to display the content of Cd02
Cd04=1 2 wire Operation by external terminal 1, including FR, RR, terminal (1, 2, 3, 4), press $\boldsymbol{\Delta} \boldsymbol{\nabla}$ key to display the content of Cd02

Cd04=2 Operation on operation panel 2, $\mathbf{\Delta} \boldsymbol{\nabla}$ key fine tuning frequency
Cd04=3 2 wire operation on external terminal 2 , including FR, RR, terminal (1, 2, 3, 4), $\boldsymbol{\Delta} \boldsymbol{\nabla}$ key fine tuning frequency

Cd04=4 3 wire Operation by external terminal 1, including FR, RR, terminal (1, 2, 3, 4), press $\boldsymbol{\Delta} \boldsymbol{\nabla}$ key to display the content of Cd02

Cd04=5 3 wire operation on external terminal 2 , including FR, RR, terminal (1, 2, 3, 4), $\boldsymbol{\Delta} \boldsymbol{\nabla}$ key fine tuning frequency

\S Cd05 Set V/F pattern (Selective range 1~14)

The function cannot be modified during revolution
There are 11 patterns of V/F slope, as follow :

When Cd05=11, V/F slope is determined by Cd57, Cd58
Cd05=12
1.5 power curve

Cd05=13
1.7 power curve

Cd05=14 square curve

§ Cd06 Motor current rate (Settable range 25~100)

Set motor overload protective current, in order to avoid motor failure because of overload. Set value=100, please calculate the following formula:

Set Value $=$ Motor rated current $/$ Inverter rated current $\times 100$
Ex. Use inverter with $3.7 \mathrm{KW}(5 \mathrm{HP})$ to drive motor with $2.2 \mathrm{KW}(3 \mathrm{HP})$
Inverter rated current $=17.4 \mathrm{~A}$
Motor rated current $=8 \mathrm{~A}$
Set Value $=8 / 17.4 \times 100=46 \%$

§ Cd07 Torque compensation Vb (Settable range 0~150)

The function cannot be modified during revolution.
This function is to raise output voltage to increase torque of motor. It can also be used to increase load slope of low voltage produced by long wiring between inverter and motor, as well as fluid, fan and pump.

$\S \underline{\text { Cd08, 09, 10, } 11 \text { Acceleration / deceleration time (Settable range 0.1~6000) }}$
The time needed for set frequency from 0 Hz to 50 Hz .
There are 2 selections for each of acceleration time and deceleration time.
To set acceleration/deceleration time
Set Value $(T)=(50-0) / \triangle F \times T 1$
T1: time needed for accelerate / decelerate
$\triangle F$: frequency changed
Ex.: Frequency from 50 Hz down to 30 Hz , needed time 1 sec . Then:
Set Value (T) = 50 / 50-30 $\times 1=2.5$
Cd08 = Acceleration time
Cd09 = Deceleration time
Cd10 $=2^{\text {nd }}$ Acceleration time
Cd11 $=2^{\text {nd }}$ Deceleration time
Note: The $2^{\text {nd }}$ acceleration/ deceleration time only available on external operation mode. (E.g. Cd04=1)

§ Cd12, 13, 14 Speed setting (Settable range 0.5~240)

This function has 4 kinds of speed setting
The $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ speeds are set from external terminal FR (or RR) which accommodate terminal 3,5 , the setting value cannot exceed the allowed range.
Cd12 $=2^{\text {nd }}$ speed setting
Cd13 $=3^{\text {rd }}$ speed setting
Cd14 $=4^{\text {th }}$ speed setting
Note: When apply to multi-speed setting, use external control (e.g. Cd04=1) to start and use panel to pre-input to set frequency.

§ Cd15 Jogging frequency (Settable range 0.5~30)

To control jogging, use external terminal DI3 accommodate $\underline{F R}$ or $\underline{R R}$ with $\underline{C O M}$ shorted. Set running direction

Set running direction
FR or RR

DI3

Running mode

Jogging
Forward(reverse)

Note: Jogging operation is valid only when operation command selects the external operation signal mode (e.g. Cd04=1) and $\mathrm{Cd} 59=0$ or 1.

Jogging operation procedures:

1. First put in DI3, and then $\underline{\underline{R}}$ (or RR).
2. Put in $\underline{\mathrm{DI} 3}$ and $\underline{\mathrm{FR}}$ (or RR) simultaneously.

Be sure always to put in $\underline{\mathrm{DI} 3}$ before $\underline{\mathrm{FR}}$ (or $\underline{\mathrm{RR}}$).

\S Cd16 Start frequency (Settable range 0.5~60)

Set motor start frequency
Settable range of frequency from 0.5 Hz to 30 Hz , accuracy is 0.01 Hz .

Note: The most appropriate range for start frequency is 0.5 Hz to 10 Hz .

§ Cd17 Upper limiter of frequency (Selective range 10~240)

This limiter is used to operate within upper limit frequency of motor
Avoid input errors caused by the panel keys and result in mechanical damage.

\S Cd18 Lower limiter of frequency (Settable range 0.5~100)

This limiter is used to operate within lower limit frequency of motor

§ Cd19 Acceleration / deceleration time of jogging (Settable range 0.10~30.00)

Time needed for set frequency from 0 Hz to 50 Hz .
Set Value $(T)=(50-0) / \triangle F \times T 1$
T1: Time needed for acceleration/deceleration
$\triangle F$: Frequency changed
§ Cd20, 21 Jump frequency (Settable range 0~240)
This function is to avoid mechanical resonance frequency
Frequency operation automatically jumps to point $+/-$ jump width (set by Cd22)
This function is only available on constant speed operation, not influence during acceleration/deceleration, it is settable at 2 points.

§ Cd22 Jump frequency width (Settable range 0-6)

This function must accommodate Cd20 and Cd21

§ Cd23 Braking mode (Settable range 0-3)

This function must accommodate Cd24, Cd25, and Cd26.
Cd23=0 No DC braking
Cd23=1 Stop mode
Cd23=2 Start mode
Cd23=3 Stop and start mode
\S Cd24 DC braking frequency (Settable range 1~60)
This function must accommodate Cd23, Cd25, and Cd26.
Set frequency of DC brake starts at the time of inverter deceleration stops, the $D C$ brake is active when operates below the starting frequency.
§ Cd25 DC braking voltage (Settable range 1~15)
This function must accommodate Cd23, CD24, and Cd26.
DC braking torque setting
Cd25=1-15, the higher value the higher output brake torque
Note: When DC brake voltage is high, be aware of over current.

\S Cd26 DC braking time (Settable range 1~60)

Adjust DC braking time

Note:

1. DC braking time too long or too many times is possible to cause motor damage because of overheating.
2. Set $\mathrm{Cd} 23=0$ when DC braking is not required.

§ Cd27 Motor running direction (Settable range 0~2)

Fix motor running direction to prevent mechanical damage.
Cd27=0 both forward, reverse directions available, stop before changing direction.
Cd27=1 both forward and revise directions available, No stop required.
Cd27=2 only forward operation is available.
Cd27=3 only reverse operation is available.
$\S \underline{\text { Cd28 Restart / Free run start (Settable range 0~3) }}$

Cd28	Restart	Free run start
0	No function	No function
1	With function	No function
2	No function	With function
3	With function	With function

1. Free run restart function:

When power supply failure occurs or voltage loss, there may be a malfunction on PCB control circuit, this function is to return to the original setting of speed and frequency after power recovery.

Note:
(1) Free run direction must be the same as setting direction.
(2) After power recovery, there is about 2 sec. delay time (motor frequency detect) for start.
Restart after power recovery, the inverter will output a frequency signal first to detect if it conforms the frequency of free run, if the two frequencies are equal, the inverter output rated voltage then. The purpose is to prevent over current to happen.
2. Restart after instantaneous power failure

This function if different from free run restart, the inverter control power is maintained above 5V.

Restart after instantaneous	
power failure: no function	When it detects low voltage "PLU", it activates "STOP", "PLU". After recovery of voltage, "PLU" are de-active, "STOP" remains the same, and it will have to switch "ON" again to restart if you select external control, if you select panel control, just press "FWD" or "REW" key to restart.
Restart after instantaneous power failure: with function	Restart motor under free run.

Note: The inverter will be de-active when control voltage is less than 5 V .
Apply with free run restart function when it is required.

§ Cd29 Time (Settable range 0~9000)

This function must accommodate $\operatorname{Cd} 47=0$ setting.
When motor starts operation, the time counter is active.

\S Cd30 Stop by panel key (Settable range 0~1)

Cd30=0 No function
Cd30=1 with function
Stop function: This function enables the inverter to be stopped by panel key while the inverter is operated by external sequence.

§ Cd31 Initial factory setting（Settable range 0，1）
 The function cannot be modified during revolution．

Set data to original factory setting．
Cd31＝0 No change
Cd31＝1 Initial factory setting，refer to function code table．
Note：After this function is active，content value returns to＂ 0 ＂，readable value is always＂ 0 ＂．
§ Cd32，33，34，35 DI1～D14 external terminal function setting（Settable range 0～14）
Setting external terminal by operator request，after external terminal put in，according to Cd32 is DI1 function setting，Cd33 is DI2 function setting，Cd34 is DI3 function setting，Cd35 is DI4 function setting．
0 ：No motion
1：Two kinds of speed order 〔2DF 〕
2：Three kinds of speed order（3DF 〕
3：Five kinds of speed order（5DF 〕
4：Two kinds of acceleration time 〔2AC〕
5：Two kinds of deceleration time 〔2DC〕
6：JOG
7：Inertia stop operation 〔MBS 〕
8：Failure clear and Programable Logic Controller 〔PLC〕time reset 〔RST 〕
9：Switch analog input Al1，Al2
10：PID disable
11：PID Error Back
12：PID integral preservation
13：PID integral reset
14：PID soft start
Notice：When setting is 7 〔MBS〕 or 8 RST〕，directly set the external terminal short to act without assume external operation pattern．

§ Cd36 Failure record clear（Settable range 0，1）

Clear the failure record content of Code 32，33，34，and 35.
Cd36＝0 No change
Cd36＝1 All of the contents of data will be＂nOnE＂，display of＂LoAd＂after setting
Note：After this function is active，content value automatically returns to＂ 0 ＂，thus readable value is always＂ 0 ＂．

§ Cd37 Frequency gain setting (Settable range 20~200)

Select ratio of frequency gain
Gain setting for external input signals are available using this function.
Output Frequency $=$ Set Value \times Frequency Gain \times MAX. Frequency
Ex. Under the mode of external voltage (0-10V) frequency setting, frequency gain = 100%, set voltage to $2 \mathrm{~V}, \mathrm{MAX}$. Frequency (FH) is 120 Hz :
Output Frequency $=(2 \mathrm{~V} / 10 \mathrm{~V}) \times 120 \mathrm{~Hz} \times 100 \%=24 \mathrm{~Hz}$
If change frequency gain to 150%, then
Output Frequency $=(2 \mathrm{~V} / 10 \mathrm{~V}) \times 120 \mathrm{~Hz} \times 150 \%=36 \mathrm{~Hz}$

Note: If the maximum frequency (FH) exceeds more than 120 Hz , gain setting of larger than 100% is ignored and fixed at 100% and input data of Cd37 will not be changed.
§ Cd38 Analog output calibration (Settable range 90~110)
Set the ratio of frequency graduation calibration then
Cd38=99: 99\% of initial factory
Cd38=101: 101\% of initial factory
Set Cd54 to select analog output
§ Cd39 Frequency command bias (Settable range 0~250)
External analog frequency command bias setting

§ Cd40, 41, 42, 43 Multi-speed setting (Settable range 0.5~240)

This function has 8 kinds of speed operation
Use external terminal $\underline{\text { FR (or RR) accommodate DI1, DI2, DI3, DI4 to select different }}$ speeds. Refer to the following table:
$\operatorname{Cd40}=5^{\text {th }}$ step speed setting
Cd41 $=6^{\text {th }}$ step speed setting
Cd42 $=7^{\text {th }}$ step speed setting
$\mathrm{Cd} 43=8^{\text {th }}$ step speed setting
Example : DI1 set to be 2DF , DI2 set to be 3DF , DI3 set to be 5DF(DI1~DI4 any three of them, could be set to be 2DF , 3DF, 5DF)

External Terminal ame /Setting Function	Selective speed							
	2	3	4	5	6	7	8	
DI1/2DF	\bigcirc		\bigcirc		\bigcirc		\bigcirc	
DI2/3DF		\bigcirc	\bigcirc			\bigcirc	\bigcirc	
DI3/5DF				\bigcirc	\bigcirc	\bigcirc	\bigcirc	

: Stands for external terminal to put in.
Note: Apply to multi-speed setting external control is required for operation control mode (e.g. Cd04=1).

\S Cd44 Stop mode (Settable range 0~2)

Cd44=0 Deceleration stop
Cd44=1 Free run stop
Cd44=2 Free run stop, but restart after the deceleration time is reached, deceleration time is set by Cd11.

\S Cd45 Frequency detect level (Settable range 0.5~240)

This function is only available when RELAY output terminal Cd47=6 or Cd48=6, and Cd45 is assigned.

\S Cd46 Speed multiplier (Settable range 0.01~500)

The function shows revolution speed multiplied by a scaling factor on the Display.
Note: 1. HZ and A LED de-active.
2. RPM $=$ Frequency $\times \mathrm{Cd} 46$
3. If the value overflow, it will show "9999".

\S Cd47 Relay 1 output select (Settable range 0~6)

The function sets the mode of relay1 to activate.

Cd47	Specification	Remark
0	Time counter	Time reached to the content of Cd29
1	Fault	
2	Stop	
3	Acceleration	
4	Speed reached	
5	Deceleration	
6	Speed pass over	Revolution frequency >content of Cd45
7	Current pass over	Current percentage >content of Cd48

\S Cd48 Detect current level (Settable range 40~150)

The function is RELAY output terminal function selection $\mathrm{Cd} 47=7$, Cd 48 allocate motion calibration, Cd59 set reset.

\S Cd49 Function to lock data (Settable range 0, 1)
To lock data, prevent errors by none operator.
Cd49=0 Data change capable
Cd49=1 Data change not capable

§ Cd50 Software version (Read only)

This function is to record software version, read only.
§ Cd51 Motor rated voltage setting Vr (Settable range 10~450)
This function cannot be modified during revolution.
RMS Setting
A. 220V Series: Value of Cd51 = Motor rated voltage / 1
A. 380V Series: Value of Cd51 = Motor rated voltage / 1.73
B. 460 V Series: Value of Cd51 = Motor rated voltage $/ 2$

Ex.
a. If the motor rated voltage 220 Vrms . Power supply voltage 220 Vrms , then setting Cd51=220/1=220, then the inverter output Vrate $=220 \mathrm{Vrms}$.
b. If the motor rated voltage 380 Vrms . Power supply voltage 380 Vrms , then setting Cd51=380/1.73=220, then the inverter output Vrate=380Vrms.
c. If the motor rated voltage 460 Vrms . Power supply voltage 460 Vrms , then setting Cd51=460/2=230, then the inverter output Vrate $=460 \mathrm{Vrms}$.

1. Vin $>$ Vrate when $\mathrm{Fr}<\mathrm{Fb}$ Vout $=\mathrm{Fr} / \mathrm{Fb} \times$ Vrate when $\mathrm{Fr}>\mathrm{Fb}$ Vout = Vrate
2. Vin <Vrate when Vout <Vin Vout $=\mathrm{Fr} / \mathrm{Fb} \times$ Vrate when Vout $>$ Vin Vout $=$ Vin
Vin: Power supply voltage
Vout: Inverter output voltage
Vrate: Motor rated voltage
Fr: Inverter revolution frequency
Fb : base frequency
\S Cd52 Auto voltage compensation (settable range 0.5\%~15.0\%)
The function cannot be modified during revolution.
The function is to compensate torque of motor in low r.p.m. Auto voltage compensation parameter is to increase torque to increase output voltage
This function must accommodate the content of Cd03, Cd63

§ Cd53 Motor slip differential compensation (Settable range 0~100)

This function is to compensate speed variation produced by load variation.
This function must accommodate the content of Cd52.
Setting value 0-100 in relative slip differential 0.0-10.0\%
Ex. 60HZ, 4-pole 1700 rpm
Synchronous speed $=1800 \mathrm{rpm}$
Full-load speed $\quad=1700 \mathrm{rpm}$
Slip differential speed $=1800-1700=100 \mathrm{rpm}$
Slip differential \% = Slip differential speed $/$ Synchronous speed $\times 100 \%$

$$
\begin{aligned}
& =100 / 1800 \times 100 \% \\
& =5.5 \% \text {, Setting Cd52=55 }
\end{aligned}
$$

Slip differential compensation

§ Cd54 External analog output selection (Settable range 0~1)
Indicate analog output Vout terminal (0~10V) Physical definition of output single.
Cd54=0 Indicate output frequency.
Cd54=1 Indicate output current
§ Cd55 External analog input selection (Settable range 0~1)

Setting value	IN1, IN2
0	0 V indicate $0 \mathrm{HZ}, 10 \mathrm{~V}$ indicate operation highest frequency \circ
1	0 V indicate operation highest frequency, 10V indicate $0 \mathrm{HZ} \circ$

§ Cd56 Over current stall preventive mode (Settable range 10~200\%)

This function is to prevent when motor current exceeds stall current from stall. There are 2 kinds of acceleration time slopes when motor acceleration current exceeding stall current occurs:
Instantaneous load increase during steady operation and current exceeding over current stall, revolution frequency will drop till current dropped to within stall current level.

§ Cd57 Maximum frequency setting FH (Settable range 10~240)
This function cannot be modified during revolution.
When Cd05=11, the maximum frequency V/F slope FH
Settable range $10 \mathrm{~Hz}-240 \mathrm{~Hz}$
Please refer to function code table Cd60.
§ Cd58 Base frequency setting Fb (Settable range 10~240)
This function cannot be modified during revolution.
When Cd05=11, the base frequency V/F slope Fb
Settable range $10 \mathrm{~Hz}-240 \mathrm{~Hz}$ ($\mathrm{Fb} \leqq \mathrm{FH}$). Please refer to function code table Cd60.

§ Cd59 Stagnancy of current detected (2~10\%)

This function accommodate the content of Cd47, Cd48
When Cd47=7, Detect current level over Cd48, input RELAY, but current must be decreased to equal to the value of C48 minus the value of Cd59, RELAY will be opened.
\S Cd60 V / F frequency FC (Settable range 0.5~240)
This function cannot be modified during revolution.
To set V/F slope frequency FC when $\mathrm{Cd05}=11$.
Settable range $10 \mathrm{~Hz}-240 \mathrm{~Hz}(\mathrm{FC} \leqq \mathrm{Fb})$

§ Cd61 PWN frequency (Settable range 0~7)
This function cannot be modified during revolution.
This function is to set PWM frequency.

Cd61	PWM Frequency
0	Setting by Cd62 $(1.5-4.0 \mathrm{~Hz})$
1	4 KHZ
2	5 KHZ
3	6 KHZ
4	7 KHZ
5	8 KHZ
6	9 KHZ
7	10 KHZ

Note: When exceed 10kHz, please set=0, maxima 16khz by Cd62

§ Cd62 PWM Frequency (Settable range 15~160)

This function cannot be adjusted during operation.
This function is to set PWM frequency. Frequency (KHZ)= settable value/ 10
Ex: Cd62 $=15$, PWM Frequency $=1.5 \mathrm{KHz}$
Ex: Cd62 $=30$, PWM Frequency $=3.0 \mathrm{KHz}$
\S Cd63 Start frenquency of auto voltage compensation (Settable range 3.0~20.0HZ) The function cannot be modified during revolution.

This function is the point of motion to assume auto compensation voltage start frenquency.
This function accommodate the content of Cd03, Cd52

\S Cd64 Dynamic braking range (Settable range 0-1)

This function cannot be adjusted during revolution.
Cd64 = 0 Dynamic braking can be active during acceleration, deceleration and constant speed.
Cd64 = 1 Dynamic braking can be active during acceleration and deceleration, but not active during constant speed operation.
§ Cd65 Instant initial field time (Settable range 1-7)
This function cannot be adjusted during revolution

This function is to adjust instant initial field current of motor. Shorter of the time is higher of the field current.

Cd65	Instant initial field time
1	64 mS
2	128 mS
3	256 mS
4	512 mS
5	1024 mS
6	2048 mS
7	4096 mS

§ Cd66 Digital filter function (Settable range 1-6)
 This function is adjustable during revolution

This is function is active as digital filter while invert with external analogue input. Increasing the figure to stabilized frequency while noise of external analogue input is higher. Decrease the figure when inverter required to response faster.

Cd 66	Digital filter time
1	4 ms
2	8 ms
3	16 ms
4	32 ms
5	64 ms
6	128 ms

§ Cd67 Power source positioning accuracy calibration (Settable range 0-20) This function is adjustable during revolution

This function is to adjust the calibration of voltage positioning on DC BUS between detected and actual position. The display value of $\mathrm{Cd} 02=3$ will be lower when Cd 67 set at bigger figure. Cd02=3 display will be higher when Cd67 setting at smaller figure.
§ Cd68 Motor vibration compensation (Settable range100~500) The function cannot be modified during revolution.

This function is being modified vibration when the motor spin out, set Cd03=0
When the motor vibrates and know the value of vibration by Cd02=10
E.g.: cause Cd02=10 indicate $160 \sim 210$, assume Cd68 = 200
$\S \underline{C d 69}$ Motor speed search time(Settable range 0~15)
The function cannot be modified during revolution.
Adding Function CD28
\S Cd70 Dynamic Braking active level (Settable range 120~140) This function cannot be modified during revolution

This function is to adjust active point of dynamic braking.
Note:
220 V series: protection point voltage (VDC) $=\mathrm{Cd} 70 \times 200 \mathrm{~V} \times \% \times \sqrt{2}$
400 V series: protection point voltage $(\mathrm{VDC})=\mathrm{Cd} 70 \times 400 \mathrm{~V} \times \% \times \sqrt{2}$
\S Cd71 Over Voltage prevention function active point (Settable range 130~150) This function cannot be modified during revolution

This is to adjust the over voltage protection active point when over voltage occurred.
Note :
220 Vseries : active voltage (VDC) $=$ setting value $\times 200 \mathrm{~V} \times \times \sqrt{2}$
400 Vseries : active voltage (VDC) $=$ setting value $\times 400 \mathrm{~V} \times \% \times \sqrt{2}$
\S Cd79 Auto saving function setting (setting range 0~1)
This function can't be modified during revolution.
Whether select to use memory function of power failure or not.
Cd79=0 Disable auto saving
Cd79=1 Enable auto saving. When power off and current step PLC will be recorded automatically.
§ Cd80 Modbus Protocol and communication mode setting (settable range 0-6) This function can't be modified during revolution.

Selection of operation method on RS485 communication port. Supporting Modbus Protocol.

Cd80=0 RS485 shut down communication interface.
Cd80=1 Active RTU Mode $(8, n, 1)$. Parameter change is not allowed.
Cd80=2 Active RTU Mode $(8, n, 1)$. Allow changes on general parameter.
Cd80=3 Active RTU Mode $(8, n, 1)$. Allow changes on operation instruction and general parameter.
§ Cd81 RS485 communication address setting (settable range 1-240)
This function cannot be modified during revolution
Corresponding communication address should be set in advance when active RS485 communication function. Inverter is at slave side.
Note: Communication function refers to manuals of interface.
\S Cd82 Series communication baud rate setting (settable range 0-3) This function can't be modified during revolution.

Setting of Baud rate during communication
Cd82=0 2400 bps
Cd82=1 4800 bps
Cd82=2 9600 bps
Cd82=3 19200 bps
Note: Re-start inverter after setting Baud rate.
\S Cd83 Series communication response time setting (settable range 0-15) This function can't be modified during revolution.

Setting waiting time for response when inverter receive correction data. MODBUS RESPONE TIME=4ms * CD83
$\S \underline{C d 90}$ Series communication parameter store eeprom (settable range 0~1)

Cd90=0 unstore
Cd90=1 store one data and reset 0

§ CE00,01,02,03 Failure record

Record cause of failure, in order to solve failure.
Note: 1. Cannot record failure Err, Ero, Erc.
2. Only memorize 4 records.
3. Cannot record inverter stopped by low voltage.
4. Read only Cd00,01,02,03 or delete all (Code 36), cannot put in failure record by operator.
§ CE05 ~ CE20 Multi-step function control frequency setting (settable range $0.5 \sim 240 \mathrm{HZ}$)

Maximum 16 steps.
CE05 $1^{\text {st }}$ step speed setting
CE06 $2^{\text {nd }}$ step speed setting
CE07 $3^{\text {rd }}$ step speed setting
CE08 $4^{\text {th }}$ step speed setting
CE09 $5^{\text {th }}$ step speed setting
CE10 $6^{\text {th }}$ step speed setting
CE11 $7^{\text {th }}$ step speed setting
CE12 $8^{\text {th }}$ step speed setting
CE13 $9^{\text {th }}$ step speed setting
CE14 $10^{\text {th }}$ step speed setting
CE15 $11^{\text {th }}$ step speed setting
CE16 $12^{\text {th }}$ step speed setting
CE17 $13^{\text {th }}$ step speed setting
CE18 $14^{\text {th }}$ step speed setting
CE19 $15^{\text {th }}$ step speed setting
CE20 $\quad 16^{\text {th }}$ step speed setting
§ CE21~CE36 Multi-step process control time setting (settable range 0-100Min)
Maximum 16 steps. End of entire procedure if time setting $=0$.
CE21 $1^{\text {st }}$ step time setting
CE22 $2^{\text {nd }}$ step time setting
CE23 $3^{\text {rd }}$ step time setting
CE24 $4^{\text {th }}$ step time setting
CE25 $5^{\text {th }}$ step time setting
CE26 $6^{\text {th }}$ step time setting
CE27 $7^{\text {th }}$ step time setting
CE28 $8^{\text {th }}$ step time setting
CE29 $9^{\text {th }}$ step time setting
CE30 $10^{\text {th }}$ step time setting
CE31 $11^{\text {th }}$ step time setting
CE32 $12^{\text {th }}$ step time setting
CE33 $13^{\text {th }}$ step time setting
CE34 $14^{\text {th }}$ step time setting
CE35 $15^{\text {th }}$ step time setting
CE36 $16^{\text {th }}$ step time setting

\S CE47 Multi steps function modes selection (settable range $0 \sim 1$)

The function cannot be modified during revolution
Select operation modes on speed variation when process control switch from previous step to next step.
CE47=0 Liner operation
CE47=1 Gradually operation. (Perform time can set to zero, when perform time set to 0 , perform time will according to CD08, CD09 increase or decrease. If the step frequency set to 0 , the step will be ended.)

Liner operation	
Gragually operation	

§ CE48 Multi steps function operation reset (settable range0~1) The function cannot be modified during revolution

Memorized of current operation step and time (in sec) while shut down or power failure. Step and time reset to 0 when set CE48=1.
Note: External terminal 6 set to RST function, when RST connect with COM, it will reset the records and steps time to 0 .

§ CE49 Multi steps process control continuous operation (settable range0~1) The function cannot be modified during revolution

Selection of shut down or start from $1^{\text {st }}$ step while entire operation procedure finished.
CE49=0 Not continuous operation.
CE49 $=1$ Continuous operation. From 1st steps' speed continuous operation.
CE49=2 Continuous operation, perform speed as the last speed in the step, till the RST or CE48 set to1, then change to first step's speed.

Not continuous operation	
Continuous operation	
Continuous operation, perform speed as the last speed in the step, till the RST or CE48 set to1	

§ CE52 Choice of multi-speed record file (settable range 1~6)
The function cannot be modified during revolution
The setting cannot be changed while the machine is working.
According to the needs of the user, choose different file for the current step, the data CE05~CE36 are stored in the files.
§ CE53 Multi-steps all files set to default (settable range 0~1)
The function cannot be modified during revolution
The setting cannot be changed while the machine is working.
CE53=0 Data remain unchanged.
CE53=1 Reset data in files 1-2 to default.
§ CE54 Multi-steps memory duplicate function (settable range 1~6)
The function cannot be modified during revolution
The setting cannot be changed while the machine is working.
Duplicate current using file (CE05~CE36) to CE54 .
§ CE61 Input terminal for Set Point and PI feedback (settable range 0~5) The function cannot be modified during revolution

CE61	Target value	PI feedback terminal
0	Cd00	IN1
1	Cd00	IN2
2	CE67	IN1
3	CE67	IN2
4	IN1	IN2
5	IN2	IN1

Note:

1. $\mathrm{IN} 1(4 \sim 20 \mathrm{~mA})$ scale to $0 \sim 100.0 \%$, $\mathrm{IN} 2, ~ I N 3(0 \sim 10 \mathrm{~V})$ scale to $0 \sim 100.0 \%$
2. Make sure this parameter setting does not conflict with the setting for Cd01 (Set frequency source).
Ex: If Cd01=1 then the parameter CE61 cann't be modify to 1,3 or 4 .
§ CE62 Proportion gain (settable range 0~25.0)
PID control and associated gain (P).
§ CE63 Integral gain (settable range $0.0 \sim 360.0 \mathrm{sec}$)
PID control and associated gain (I).
§ CE64 Differential gain (settable range $0.0 \sim 10.0 \mathrm{sec}$)
PID control and associated gain (D).
§ CE65 Integral output limit (settable range 0~100 \%)
Set \% a unit as output limit of the Integral control. 100\% is maximum frequency output.
§ CE66 PID output limit (settable range 0~100\%)
Set \% a unit as output limit of the PID control. 100\% is maximum frequency output.
§ CE67 PID control target value 1 (settable range $0 \sim 100.0 \%$)
This parameter defines the percentage of target value when PID control.
§ CE68 PID output delay time (settable range $0 \sim 10 \mathrm{sec}$) Set PID output delay time.
§ CE69 PID offset adjust (settable range 0~200\%) Set \% a unit as PID output offset. 100\%is central point.
§ CE70 PID output gain (settable range 0~25) Set enlarge magnification of PID output.
§ CE74 P control status selection (settable range 0~1) $P, I, ~ D$ controller is individual controller separately when setting value is 0 . P controller is in front of I, D controller when setting value is 1 (an error passes through P controller then enter into I, D controller).
§ CE78 PID output characteristic selection (settable range 0~1)
Set PID output inverse function, inverting when set 1.
§ CE79 PID control selection (settable range 0~4)
0 : PID disable
1 : PID outpout is inverter frequency output, D control error.
2 : PID outpout is inverter frequency output, D control feedback.
3 : PID output is corrective value of inverter frequency output (accede main frequency), D control error.
4 : PID output is corrective value of inverter frequency output (accede main frequency), D control feedback 。
§ CE80 PID target acceleration/ deceleration time (settable range 0~25.5)
Set PID target acceleration/ deceleration time, setting way is to accelerate 0 to 100%.
When PID target is needed to be smoothly curve not pulse wave.

3. Description of alarm display indications

Error indication	Description of fault operation	Item for inspection	Processing
Err	Operation error	Was the unit operated as indicated in the manual	Use the correct procedure
ErO	Operation error of internal ROM, RAM	Switch off the power and then apply again	Replace the unit
ErC	Error of internal CPU	Is there a large amount of external noise	Check the contact absorber. Install a noise filter
OCPA	Over current (180\% rated current)	Was there rapid acceleration	Lengthen the acceleration time
OCPd	Over current (180\% rated current)	Was there rapid deceleration	Lengthen the deceleration time
OCPn	Over current (180\% rated current)	Was there any variation in the load	Lengthen the time for the load variations
OC	Over current (200\% rated current)	Was there rapid acceleration / deceleration and variation in the load	Lengthen the acceleration and deceleration time and reduce the load
OCS	Output short circuit or ground detected	Is there a short circuit for the output or grounding for the motor	Perform a megger check for the motor
OU	DC link over voltage	Was there fast deceleration, or fast voltage	Lengthen the deceleration time. Investigate the use of the optional DBR
LU	Insufficient voltage detected due to power failure or instantaneous power loss.	Is there a low voltage at power, or internal inverter wiring error	Improve the voltage condition and confirm inverter model
LU A	Insufficient voltage detected due to power failure or instantaneous power loss. And the auto save function is working	Is there a low voltage at power, or internal inverter wiring error	Improve the voltage condition and confirm inverter model
OH	Overheating of the cooling fan detected	1. Cooling fan stops 2. Ambient temperature too hot 3. Motor being overload	1. Exchange the cooling fan 2. Lower the ambient temperature 3. Check the load conditions
OL	Overload detected for more than one minute	Is the motor being overloaded	Increase the capacity of the inverter and motor
OL A	Overload warning, the motor is nearly $1 \mathrm{~min}, 150 \%$ overload.	Is the motor being overloaded	Increase the capacity of the inverter and motor
bUOH	DBR overheat detected	Is the braking ratio appropriate	Reduce GD^{2} of load or lengthen deceleration time
PLU	Power voltage too low	Is power voltage too low	Improve power supply condition

8. Troubleshooting

Description of trouble		Possible cause	Solution
The motor does not run at all		1. Wiring error	Refer to the wiring diagram 1. Check the power input wiring 2. Is there a voltage for U.V.W output
		Wrong settings at operator panel	The function code No. 04 is as follows 0: Panel key operation 1: External signals
		3. Inverter displays fault indication	Refer to "Protect Function"
		4. Motor cannot start due to overload	Exchange a higher capacity one
		5. Motor breaks down	Repair motor
		6. Inverter breaks down	Please contact us
"OCPA" is indicated as soon as the motor is started. (Overcurrent protects operation during acceleration.)		1. Motor wiring error	Refer to the wiring diagram
		Terminals of inverter and motor (U.V.W.) circuit shorted or ground connection	Banish circuit shorted or ground connection
		3. Overload	Reduce the load or increase inverter capacity
		Is V/F slope appropriate	Check Code 05 V/F slope is appropriate with motor specification
		Is start torque appropriate	Adjust Code 07 torque boost to over come steady friction but not over current trip.
		Is the acceleration time too short when compared to load GD ${ }^{2}$	Lengthen acceleration time by apply Code 08 and Code 10 or increase inverter capacity
		The inverter is starting during motor free-run	Refers to Code 28, change the value from 0 to 1
"OCPd" is indicated as the motor is decelerating. (Over current protects operation during deceleration).		Deceleration time too short, unable to be loaded	Apply Code 09 and Code 11 to lengthen deceleration time or increase inverter capacity
"OC" or "OCS" is indicated during operation. (Over current)		Short circuit on U.V.W or grounding for motor	Exclude short circuit or grounding
		2. Instantaneously mechanical load on motor	Reduce load or increase inverter capacity
		3. Motor breaks down	Repair motor
		4. Inverter breaks down	Please contact us
"OU" is displayed during inverter operation		Is power voltage with the specification	Improve power voltage condition
		2. Braking resistor not applied	Apply braking resistor, increase braking ratio
		Deceleration time too short, unable to be loaded	Apply Code 09 and Code 11 to lengthen deceleration time
"PLU" is displayed during inverter operation		Is power voltage with the specification	Improve power voltage condition
		2. Instantaneous power voltage failure	Check the capacity of the power facilities
		Power dropped and the protector function has operated	Check the capacity of the power facilities
"OL" is displayed during inverter operation		1. Overload	Reduce load or increase inverter capacity
		Is inverter over current limiter appropriate	Apply Code 06 to re-set motor rated current
"OH" is displayed during inverter operation		Check if the cooling fan is still working	Change cooling fan and clean dirt
		2. Is ambient temperature too hot	Improve ambient temperature condition
No any indication, the output frequency displayed "0"		1. Power failure	Check the capacity of the power facilities
		Is there loosen part on external control terminal	Check external control terminal

9. Maintenance and Inspection

Maintenance and inspection must be taken under power off.
Cautions on maintenance and inspection:
(1) Capacitor is charged at high voltage for a while after turning off the power. (Accordingly, start the inspection work at least 5 minutes after turning off the power)
(2) Do the work with operator.

Inspection items:
(1) Please check the following items
A. Motor runs as expected.
B. Avoid installing on circumstances like acid, alkaloid.
C. No trouble is recognized in the cooling system and irregular vibration or noise.
D. No parts is overheated or burned.
(2) Periodic inspection

Interval	Inspection item
Every 6 months	$1 . \quad$ Terminal plates and mounting bolts. 2. \quad Corrosion and breaks in the terminal clips for the wiring.
	3. \quad Condition for the connector fixing.

10. STANDARD SPECIFICATION

A. 200Vseries 1 phase

Motor rating (KW)	0.375*	0.75	0.75*	1.5	1.5*
Model CT2001	ES-A37	ES-A75	ESe-A75	ES-1A5	ESe-1A5
Rated current (A)	2.4	4.2	4.2	6.2	6.2
Rated capacity (KVA)	0.96	1.8	1.8	2.9	2.9
Power supply	$1 \psi 200 \sim 230 \mathrm{~V} \pm 10 \% \quad 50 \mathrm{HZ} \pm 5 \%$ or $14200 \sim 230 \mathrm{~V} \pm 10 \% \quad 60 \mathrm{HZ} \pm 5 \%$				
Output voltage	3 § 200V, 220V, 230V				
Control method	Sine P.W.M. Control				
Frequency accuracy	Digital setting: $\pm 0.1 \% \quad$ Analog setting: $\pm 0.5 \%$ ($35^{\circ} \mathrm{C}$)				
Frequency resolution	Digital setting: $0.5 \sim 100 \mathrm{~Hz} \rightarrow 0.01 \mathrm{~Hz} \quad 100 \mathrm{~Hz} \sim 240 \mathrm{~Hz} \rightarrow 0.1 \mathrm{~Hz}$Analog setting: (setting value $/ 1000$) Hz				
Frequency range	$0.5 \sim 240 \mathrm{HZ}$ (Initial frequency $0.5 \sim 30 \mathrm{~Hz}$)				
V/F ratio	10 patterns, or any V/F patterns				
Torque compensation	0 $\sim 15.0 \%$ voltage compensation, automatic voltage compensation				
Acceleration/ Deceleration time	$0.1 \sim 6000 \mathrm{sec}$ (linear, two-step setting)				
Motor Braking	No DB Transistor				
DC Braking	DC Injection Braking (Setting mode, torque, time, active frequency)				
Standard feature	Free run restart, jogging speed, upper/lower frequency limit setting, jump frequency setting, 8 -step speed setting, frequency indicated output ($\mathrm{DC} 0 \sim 10 \mathrm{~V}$), operation direction setting, forward/reverse prohibit, voltage/current limit, data lock, EMI (with CT2000ESe only)				
Relay Output	Arrival with timer, failure, stop, acceleration, frequency equal, deceleration, over frequency				
Frequency setting	Digital setting by keypad, or external analog signal (DC0~10V, DC4~20mA)				
Display	7-segment LED display: Frequency, current, voltage, setting value, function, failure status, Temperature of PIM module				
Protection	Low voltage, over voltage, instantaneous power failure, over voltage stall, overload, over current stall, instantaneous over current, acceleration over current, deceleration over current, over heat.				
Overload capacity	150\% for 1 min, anti-time limit function, adjustable (25~100\%)				
Altitude	Altitude $1,000 \mathrm{~m}$ or lower, keep from corrosive gasses, liquid and dust				
Ambient Temperature	$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (Non-condensing and not frozen)				
Storage Temperature	$-20^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$				
Humidity	Relative between 45\% to 90\% (No condensing)				
Cooling system	Forced air-cooling				
Weight (Kgs)	1.6*	1.6	1.6 *	2.5	$2.5 *$

Note 1: Braking resistor specification refer to page 6
*: Under development
B. 200Vseries 3 phase

Motor rating (KW)	0.375*	0.75	0.75*	1.5	1.5*	2.2	2.2*	3.7	$3.7 *$
Model CT2002	ES-A37	ES-A75	ESe-A75	ES-1A5	ESe-1A5	ES-2A2	ESe-2A2	ES-3A7	ESe-3A7
Rated current (A)	2.4	4.2	4.2	7.4	7.4	11.1	11.1	18	18
Rated capacity (KVA)	0.96	1.8	1.8	2.9	2.9	4.4	4.4	7.1	7.1
Power supply	$3 ¢ 200 \sim 230 \mathrm{~V} \pm 10 \%$			$50 \mathrm{HZ} \pm 5 \%$	or 3	$3 \psi 200 \sim 230 \mathrm{~V} \pm 10 \%$		$60 \mathrm{HZ} \pm 5 \%$	
Output voltage	3 § 200V, 220V, 230V								
Control method	Sine P.W.M. Control								
Frequency accuracy	Digital setting: $\pm 0.1 \% \quad$ Analog setting: $\pm 0.5 \%\left(35^{\circ} \mathrm{C}\right)$								
Frequency resolution	Digital setting: $0.5 \sim 100 \mathrm{~Hz} \rightarrow 0.01 \mathrm{~Hz} \quad 100 \mathrm{~Hz} \sim 240 \mathrm{~Hz} \rightarrow 0.1 \mathrm{~Hz}$Analog setting: (setting value/1000) Hz								
Frequency range	$0.5 \sim 240 \mathrm{HZ}$ (Initial frequency $0.5 \sim 30 \mathrm{~Hz}$)								
V/F ratio	10 patterns, or any V/F patterns								
Torque compensation	0~15.0\% voltage compensation, automatic voltage compensation								
Acceleration/ Deceleration time	0.1~6000 sec (linear, two-step setting)								
Motor Braking	DB Transistor built-in, connect braking resistor to reach 100\% regeneration braking (Note 2)								
DC Braking	DC Injection Braking (Setting mode, torque, time, active frequency)								
Standard feature	Free run restart, jogging speed, upper/lower frequency limit setting, jump frequency setting, 8 -step speed setting, frequency indicated output ($\mathrm{DC} 0 \sim 10 \mathrm{~V}$), operation direction setting, forward/reverse prohibit, voltage/current limit, data lock, EMI (with CT2000ESe only)								
Relay Output	Arrival with timer, failure, stop, acceleration, frequency equal, deceleration, over frequency								
Frequency setting	Digital setting by keypad, or external analog signal ($\mathrm{DC0} \sim 10 \mathrm{~V}, \mathrm{DC} 4 \sim 20 \mathrm{~mA}$)								
Display	7-segment LED display: Frequency, current, voltage, setting value, function, failure status,Temperature of PIM module								
Protection	Low voltage, over voltage, instantaneous power failure, over voltage stall, overload, over current stall, instantaneous over current, acceleration over current, deceleration over current, over heat.								
Overload capacity	150% for 1 min, anti-time limit function, adjustable (25~100\%)								
Altitude	Altitude 1,000m or lower, keep from corrosive gasses, liquid and dust								
Ambient Temperature	$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (Non-condensing and not frozen)								
Storage Temperature	$-20^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$								
Humidity	Relative between 45\% to 90\% (No condensing)								
Cooling system	Forced air-cooling								
Weight (Kg)	1.6	1.6	1.6	1.6	1.6	2.5	2.5	2.5	2.5

Note 2: Braking resistor specification refer to page 6 *: Under development
C. 400 Vseries 3 phase

Motor rating (KW)	0.75	0.75	1.5	1.5	2.2	2.2	3.7	$3.7 *$
Model CT2004	ES-A75	ESe-A75	ES-1A5	ESe-1A5	ES-2A2	ESe-2A2	ES-3A7	ESe-3A7
Rated current (A)	2.2	2.2	4.0	4.0	6.2	6.2	9	9
Rated capacity (KVA)	1.7	1.7	3.2	3.2	4.9	4.9	7.1	7.1
Power supply	$3 \psi 380 \sim 460 \mathrm{~V} \pm 10 \% \quad 50 \mathrm{HZ} \pm 5 \%$ or $3 \psi 380 \mathrm{~V}-460 \mathrm{~V} \pm 10 \% \quad 60 \mathrm{HZ} \pm 5 \%$							
Output voltage	3 § 380V, 400V, 415V, 440V, 460V							
Control method	Sine P.W.M. Control							
Frequency accuracy	Digital setting: $\pm 0.1 \% \quad$ Analog setting: $\pm 0.5 \%\left(35^{\circ} \mathrm{C}\right)$							
Frequency resolution	Digital setting: $0.5 \sim 100 \mathrm{~Hz} \rightarrow 0.01 \mathrm{~Hz}$Analog setting: (setting value $/ 1000$) Hz							
Frequency range	$0.5 \sim 240 \mathrm{HZ}$ (Initial frequency $0.5 \sim 30 \mathrm{~Hz}$)							
V/F ratio	10 pattern, or any V/F pattern							
Torque compensation	0 $\sim 15.0 \%$ voltage compensation, automatic voltage compensation							
Acceleration/ Deceleration time	0.1~6000 sec (linear, two-step setting)							
Motor Braking	DB built-in, connect extra braking resistor to reach 100\% braking (Note 3)							
DC Braking	DC Injection Braking (Setting mode, torque, time, active frequency)							
Standard feature	Free run restart, jogging speed, upper/lower frequency limit setting, jump frequency setting, 8 -step speed setting, frequency indicated output ($\mathrm{DC} 0 \sim 10 \mathrm{~V}$), operation direction setting, forward/reverse prohibit, voltage/current limit, data lock, EMI (with CT2000ESe only)							
Relay Output	Arrival with timer, failure, stop, acceleration, frequency equal, deceleration, over frequency							
Frequency setting	Digital setting by keypad, or external analog signal (DC0~10V, DC4~20mA) , frequency setting knob							
Display	7-segment LED display: Frequency, current, voltage, setting value, function, failure status, Temperature of PIM module							
Protection	Low voltage, over voltage, instantaneous power failure, over voltage stall, overload, over current stall, instantaneous over current, acceleration over current, deceleration over current, over heat.							
Overload capacity	150\% for 1 min, anti-time limit function, adjustable (25~100\%)							
Altitude	Altitude $1,000 \mathrm{~m}$ or lower, keep from corrosive gasses, liquid and dust							
Ambient Temperature	$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (Non-condensing and not frozen)							
Storage Temperature	$-20^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$							
Humidity	Relative between 45\% to 90\% (No condensing)							
Cooling system	Forced air-cooling							
Weight (Kg)	1.6	1.6	1.6	1.6	2.5	2.5	2.5	2.5

Note 3: Braking resistor specification refer to page 5

* : Under development

11. Function Code Table

NO	Function	Detail of Data	Initial factory setting	MODBUS Address
0	Set frequency	0~240Hz	10	128
1	Frequency setting procedure	0: Operation panel Cd00 1: External IN2 (0-10V) 2: External IN1 (4-20mA) 3: External IN2 ($0-10 \mathrm{~V}$) hysteresis 4: External IN1 (4-20mA) hysteresis 5: Keypad VR 6: Multi-steps control	5	129
2	Select monitor display data	0 : Frequency (HZ) 1: Current (I) 2: RPM 3: DC Voltage (d) 4: Output AC Voltage (V) 5: External I/O status (E) 6: Temperature of PIM module (b) 7: MCK operation frequency feedback 8: Current step of multi-step function 9: Current time of multi-step function (min) 10: Motor vibration	0	130
3	Torque mode	0: Without auto boost 1: Auto boost	0	131
4	Operation command	0: Operation panel 1 $3: 2$ wire Operation 2 1: 2 wire Operation 1 $4: 3$ wire Operation 1 2: Operation panel 2 5: 3 wire Operation 2	0	132
5	V/F pattern	1-10 fixed Modes 11: Set by Cd57, Cd58 12: V/F 1.5 power curve 13: V/F 1.7 power curve 14: V/F square curve	2	133
6	Motor rated current	25~100\%	100	134
7	Torque boost	0.0~15.0\%	2	135
8	$1{ }^{\text {st }}$ acceleration time	0.1~6000 (S/50HZ)	5	136
9	$1{ }^{\text {st }}$ deceleration time	0.1~6000 (S/50HZ)	5	137
10	$2^{\text {nd }}$ acceleration time	0.1~6000 (S/50HZ)	10	138
11	$2^{\text {nd }}$ deceleration time	0.1~6000 (S/50HZ)	10	139
12	No. 2 frequency	HZ	20	140
13	No. 3 frequency	HZ	30	141
14	No. 4 frequency	HZ	40	142
15	Jogging frequency	0.5HZ 30 HZ	5	143
16	Start frequency	0.5HZ~60HZ	1	144
17	Upper limit frequency	10~240HZ	60	145
18	Lower limit frequency	0.5~100HZ	0	146
19	Jogging acceleration / deceleration time	0.1~10 (S/50HZ)	1	147
20	Jump frequency 1	HZ	0	148
21	Jump frequency 2	HZ	0	149
22	Jump frequency width	0~6HZ	0	150
23	Braking mode	0 : de-active 1: Active when stop 2: Active when start 3: Active both stop and start	0	151
24	DC braking frequency	1~60HZ	1	152
25	DC braking voltage	0~15	5	153

	Function	Detail of Data	Initial factory setting	MODBUS Address
26	DC braking time	1~60S	1	154
27	Operation direction setting	0 : Both forward and reverse, stop before changing direction 1: Both forward and reverse, no stop required 2:Forward only 3: Reverse only	0	155
28	Restart in instantaneous power failure / Free run start	0: Without / Without 1: With / Without 2: Without / With 3: With / With	0	156
29	Time	1~9000(sec)	5	157
30	"Stop" function at panel key under the operation of external sequence	0 : Impossible 1: Possible	1	158
31	Initialize data	0 : No change 1: Data at the time of shipment	0	159
32	DI1 External terminal setting	0 : No motion	1	160
33	DI2 External terminal setting	1: 2DF 5:2DC 9: anlog switch	2	161
34	DI31 External terminal setting	2: 3DF $6:$ JOG 10: PID disable $3:$ $5 D F$ $7:$ MBS $11:$ PID inverting	3	162
35	DI4 External terminal setting	4: 2AC 8:RST	4	163
36	Memory clear for fault annunciation	1: Memory clear	0	164
37	Frequency gain setting	20~200\%	100	165
38	Analog output calibrate	90~110\%	100	166
39	Frequency command bias	0~250	125	167
40	No. 5 Frequency	HZ	45	168
41	No. 6 Frequency	HZ	50	169
42	No. 7 Frequency	HZ	55	170
43	No. 8 Frequency	HZ	60	171
44	Stop mode	0 : Decelerate stop 1: Free run stop 2: Free run stop after deceleration time is reached	0	172
45	Detect frequency level	0.5~240HZ	0.5	173
46	Speed multiplier	0.01~500	1	174
47	Relay 1 output select	0-7	1	175
48	Detec current level	40~150\%	100	176
49	Lock data	0: Data change capable 1: Data change not capable	0	177
50	Software version	Read only	X	178
51	Motor rated voltage	$\begin{aligned} & 10-450 \\ & \text { 200V Series }=1 \\ & 380 \mathrm{~V} \text { Series }=1.73 \\ & 400 \mathrm{~V} \text { Series }=2 \end{aligned}$	220	179
52	Auto voltage compensation	0.5\%~15.0\%	50	180
53	Motor slip differential boost	0.0~10.0\%	0	181
54	External analog output select	0: Display output frequency 1: Display output current	0	182
55	External analog input select	0: 0~10V normal pattern 1: 10~0V reverse pattern	0	183
56	Current stall preventive	10~200\%	150	184
57	Max. Frequency FH setting	10~240HZ (FH)	60	185

NO	Function	Detail of Data	Initial factory setting	MODBUS Address
58	Motor rated frequency Fb	$\begin{aligned} & 10 ~ 240 \mathrm{HZ} \text { (Fb) } \\ & \mathrm{FH} \mathrm{Fb} \end{aligned}$	60	186
59	Stagnancy of current detected	2~10\%	2	187
60	V/F Frequency FC	0.5~240HZ	20	188
61	P.W.M. Frequency 1	0: P.W.M. Frequency set by Cd62 1: 4 KHZ 2: 5 KHZ $3:$ 6 KHZ $4:$ 7 KHZ $5:$ 8 KHZ 6: 9 KHZ $7:$ 10 KHZ	2	189
62	P.W.M. Frequency 2	15~160	30	190
63	Start frequency of auto voltage compensation	3.0~20.0HZ	10	191
64	Dynamic braking mode	0~1	1	192
65	Instant initial field time	1~7	1	193
66	Digital filter function	1~6	5	194
67	Power source positioning accuracy calibration	0~30	0	195
68	Motor vibration compensation	100~500	200	196
69	Motor speed search time	0~15	15	197
70	Dynamic braking active level	120~140\%	130	198
71	Over Voltage prevention function active point	130~150\%	140	199
79	Auto record when power off	$\begin{aligned} & 0 \text { 0: unuse } \\ & 1 \text { : use } \end{aligned}$	1	207
80	Modbus protocol data frame and Communications mode setting		0	208
81	RS485 Communication ID Setting	1~240	240	209
82	RS485 Baud rate	$\begin{aligned} & 0: 2400 \mathrm{bps} \\ & 1: 4800 \mathrm{bps} \\ & 2: 9600 \mathrm{bps} \\ & 3: 19200 \mathrm{bps} \end{aligned}$	2	210
83	Series communication response time.	5~15	5	211
90	Series communication Parameter store eeprom	$\begin{aligned} & \operatorname{Cd} 90=0 \text { unstore } \\ & \operatorname{Cd} 90=1 \text { store one data and reset } 0 \end{aligned}$	0	218

		3	CE67	IN2		
		4	IN1	IN2		
		5	IN2	IN1		
CE62	P gain	$\frac{0 \sim 10.0}{0.2 \sim 1000.0 ~ s e c .}$			0	289
CE63	I gain				1	290
CE64	Reserved					291
CE65	Output limit	$0 \sim 100.0 \%$			100	292
CE66	PID output limit					293
CE67	PI target value Setting	0~100.0 \%			100	294
CE68	PID delay time	0~10			0	295
CE69	PID offset adjust	0~200			100	296
CE70	PID output gain	0~25			1	297
CE74	P control status selection	0~1			0	301
CE77	PID delay status selection	0~1			0	302
CE78	PID output characteristic selection	0~1			1	303
CE79	PID status selection	0~4			0	304
CE80	PID target acceleration time	0~25.5			0	305

12. Modbus Address of Display Data

Description	Notes	Range	Unit	MODBUS Address
Operation frequency		0~24000	0.01 HZ	328
Current feedback		0~9999	0.1A	329
Operation command		0~24000	0.01HZ	330
DC voltage		0~9999	0.1 V	331
Output voltage	Vac=Output voltage / $\sqrt{2}$	0~9999	0.1	332
External terminal mode		0~255		333
Module Temperature		112~1130	$0.1{ }^{\circ} \mathrm{C}$	334
Operation status	Bit2: 0=Stop, $1=$ RUN Bit14: 0=FR, 1=RR			335
Operation command	MASTER changes: Bit0: FWD command Bit1: REV command Clear Bit0 Bit1: Stop command Bit2: Reset after failure command			336
Failure	Bit4, 3, 2, 1, 0= 0:None 4:OCPA 5:OCPd 6:OCPn 8:OV 10:OH 12:OL 14:OC 15:PLU 16:OL2 $17: \mathrm{BuOH}$			337
IN 1(0~20mA)		0~1023		369
IN 2(0~10V)		0~1023		370
KEYPAD (0~10V)		0~1023		
Automatic procedure control operation time		0~999	1 min	342

13. Serial Communications User Manual

This product built in with standard RS422/RS485 communicate port, support international standard MODBUS protocol, user can monitor single or many inverters by using PLC, PC, industrial computer or other equipment which support MODBUS protocol
A. The physical link

The wiring of this product can use either RS422 (4 wires) or RS485 (2wires), by jumper.

	JP4	Figure
Single RS422	Pin 1-2 short	$13-1$
Single RS485	Pin 2-3 short	$13-2$

Fig.13-1

Fig.13-2
Note : a. When use RS422 (4wires), The 'REMOTE' socket cannot connect to any device.
b. Single transaction can read up to 10 continuous data from slave device.
c. It can connect up to 32 devices in single net.
d. The R in wiring diagram is terminal resister, only used on the device in the end of communication line.
B. Data structure in communication

This product support MODBUS RTU and MODBUS ASCII protocol. In ASCII mode, every byte of the data will transfer to two ASCII code. Ex. If byte data is 63 H , it will be $36 \mathrm{H}, 33 \mathrm{H}$ in ASCII code.
(1) Hex to ASCII code transfer table

Char	'0'	'1'	'2'	'3'	'4'	5'	'6'	7'
ASCII code	30 H	31H	32 H	33 H	34H	35H	36H	37H

Char	'8'	' 9 '	A'	B ${ }^{\prime}$	C'	' ${ }^{\prime}$	E'	F'
ASCII code	38H	39H	41H	42H	43H	44H	45H	46 H

Char	$': '$	CR	LF					
ASCII code	3 AH	ODH	OAH					

(2) The data frame format explain

Field Name	Explain
Header	Data frame initial character
Slave Address	Inverter communication address
Function	Function code
Start Address	Enquiry feedback data initial address
No. of Register	Enquiry feedback data (word)
Byte Count	Feedback data(byte)
Data	Feedback data
Register Address	Enquiry modified data address
Preset Data	Modified data
Error Check	Checksum
Trailer	Data frame stop character

C. Function code in Modbus

This product supports Function code 03 H and 06 H in MODBUS protocol.
(1) Function 03 H : Read holding register

Read the binary contents of holding registers (4 x references) in the slave. Broadcast is not supported. The maximum parameters supported by various controller models are listed on page.

Ex: Read data from 3 continuous addresses in register. The beginning address is 0080 H , the data frame are listed as follow.

Query

Field Name	Example (hex)	ASCII code	RTU 8-Bit Field
Header		$':{ }^{\prime}($ Colon $)$	None
Slave Address	F0	F 0	11110110
Function	03	03	00000011
Start Address Hi	00	00	00000000
Start Address Lo	80	80	10000000
No. of Register Hi	00	00	00000000
No. of Register Lo	03	03	00000011
Error Check		LRC (2 chars)	CRC (16 bits)
Trailer	CR LF	None	
Total Bytes	17	8	

Response

Field Name	Example (hex)	ASCII code	RTU 8-Bit Field
Header		$\prime: ’$ (colon)	None
Slave Address	F0	F 0	11110000
Function	03	03	00000011
Byte Count	06	06	00000110
$1^{\text {st }}$ Data Hi	03	03	00000011
$1^{\text {st }}$ Data Lo	E8	E 8	11101000
$2^{\text {nd }}$ Data Hi	00	00	00000000
$2^{\text {nd }}$ Data Lo	07	07	00000111
$3^{\text {rd }}$ Data Hi	00	00	00000000
$3^{\text {rd }}$ Data Lo	00	00	00000000
Error Check		LRC (2 chars)	CRC (16 bits)
Trailer		CR LF	None
Total Bytes		23	11

(2)Function 06 H : preset signal register

Presets a value into a single holding register ($4 \times$ reference). When broadcast, the function presets the same register reference in all attached slaves. The maximum parameters supported by various controller models are listed on page.

Ex. To inverter in FOH address protocol, pre set data 6000(1770H) into 0080H register, the protocol frame will listed as below.

Query

Field Name	Example (hex)	ASCII code	RTU 8-Bit Field
Header		$\ddots:$ (colon)	None
Slave Address	F0	F 0	11110110
Function	06	06	00000110
Register Address Hi	00	00	00000000
Register Address Lo	80	80	10000000
Preset Data Hi	17	17	00010111
Preset Data Lo	70	70	07770000
Error Check		LRC (2 chars)	CRC (16 bits)
Trailer	CR LF	None	
Total Bytes	17	8	

Response

Field Name	Example (hex)	ASCII code	RTU 8-Bit Field
Header		$\prime:{ }^{\prime}($ colon $)$	None
Slave Address	F0	F 0	11110110
Function	06	06	00000110
Register Address Hi	00	00	00000000
Register Address Lo	80	80	10000000
Preset Data Hi	17	17	00010111
Preset Data Lo	70	70	07770000
Error Check		LRC (2 chars)	CRC (16 bits)
Trailer	CR LF	None	
Total Bytes	17	8	

D. Error check Generation
(1) LRC Generation

Add all bytes in the message, excluding the starting colon and ending CRLF. Add them into an eight-bit field, so that carries will be discarded.
Subtract the final field value from FF hex (all 1's), to produce the ones complement.
Add 1 to produce the two's-complement. Ex. The query data is $\mathrm{FOH}+06 \mathrm{H}+00 \mathrm{H}+80 \mathrm{H}+$ $17 \mathrm{H}+70 \mathrm{H}=\mathrm{FDH}$, the two's complement is 03 H . The ' 0 ' \& ' 3 ' will be the LRC.
(2) CRC Generation

Generating a CRC
Step 1 Load a 16-bit register with FFFF hex (all 1's). Call this the CRC register.
Step 2 Exclusive OR the first eight-bit byte of the message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
Step 3 Shift the CRC register one bit to the right (toward the LSB), zero filling the MSB. Extract and examine the LSB.
Step 4 If the LSB is 0 , repeat Step 3 (another shift). If the LSB is 1 , Exclusive OR the CRC register with the polynomial value A001 hex (1010 00000000 0001).

Step 5 Repeat Steps 3 and 4 until eight shifts have been performed. When this is done, a complete eight-bit byte will have been processed.
Step 6 Repeat Steps 2 ... 5 for the next eight-bit byte of the message. Continue doing this until all bytes have been processed.
The final contents of the CRC register is the CRC value.
Step 7 When the CRC is placed into the message, its upper and lower bytes must be swapped as described below.

Pseudo code for generating a CRC-16 :
CONST ARRAY BUFFER /* data, ex: F0h, 06h, 00h, 80h, 17h, 70h */
CONST WORD POLYNOMIAL = 0A001h \quad /* X16 = X15 + X2 + X1 */
/* SUBROTINUE OF CRC CACULATE START */
CRC_CAL(LENGTH)
VAR INTEGER LENGTH;
\{ VAR WORD CRC16 = 0FFFFH;
/* CRC16 initial */
VAR INTEGER = i,j;
VAR BYTE DATA;
/* LOOP COUNTER */
FOR ($\mathrm{i}=1$;i=LENGTH; $\mathrm{i}++$) /* BYTE LOOP */
\{ DATA $==$ BUFFER[i];
CRC16 == CRC16 XOR DATA
FOR ($\mathrm{j}=1 ; \mathrm{j}=8 ; \mathrm{J}++$) /* BIT LOOP */
\{ IF (CRC16 AND 0001H) $=1$ THEN
CRC16 == (CRC16 SHR 1) XOR POLYNOMIAL;
ELSE
CRC16 == CRC16 SHR 1; DATA == DATA SHR 1;
\};
\};
RETURN(CRC16);
\};
E. Group and Global Broadcast
(1) Group Broadcast

User can use this function to control certain group of inverter at the same time. When master send out group address data, the slave inverters will react when receive order, but will not send any signal back to master.
(2) Global Broadcast

User can use this function to control all inverters at the same time. When master global broadcast, all slaves inverters will react after receive order, but will not send any signal back to master.

Group and Global broadcast address should be recognized refer to table as below, when the group and global broadcast address is in use.
There are 240 addresses in total for inverter setting, which means it can connect up to 240 inverters at the same time, and provide 1 Global Broadcast address 15-group address. Each group address can control up to 16 inverters, and user can set it.

Group	Individual Address	Group address	Global address
Group 1	$1 \ldots .16$	241	0
Group 2	$17 \ldots 32$	242	0
Group 3	$33 \ldots 48$	243	0
Group 4	$49 \ldots 64$	244	0
Group 5	$65 \ldots 80$	245	0
Group 6	$81 \ldots 96$	246	0
Group 7	$97 \ldots 112$	247	0
Group 8	$113 \ldots 128$	248	0
Group 9	$129 \ldots 144$	249	0
Group 10	$145 \ldots 160$	250	0
Group 11	$161 \ldots 176$	251	0
Group 12	$177 \ldots 192$	252	0
Group 13	$193 \ldots 208$	253	0
Group 14	$209 \ldots 224$	254	0
Group 15	$225 \ldots 240$	255	0

